Subharmonic Functions, Mean Value Inequality, Boundary Behavior, Nonintegrability and Exceptional Sets
نویسنده
چکیده
We begin by shortly recalling a generalized mean value inequality for subharmonic functions, and two applications of it: first a weighted boundary behavior result (with some new references and remarks), and then a borderline case result to Suzuki’s nonintegrability results for superharmonic and subharmonic funtions. The main part of the talk consists, however, of partial improvements to Blanchet’s removable singularity results for subharmonic, plurisubharmonic and convex functions.
منابع مشابه
A Generalized Mean Value Inequality for Subharmonic Functions and Applications
If u ≥ 0 is subharmonic on a domain Ω in Rn and p > 0, then it is well-known that there is a constant C(n, p) ≥ 1 such that u(x)p ≤C(n, p)M V (up,B(x,r)) for each ball B(x,r) ⊂ Ω. We recently showed that a similar result holds more generally for functions of the form ψ◦ u where ψ : R+ → R+ may be any surjective, concave function whose inverse ψ−1 satisfies the ∆2-condition. Now we point out tha...
متن کاملIntegrability of Superharmonic Functions and Subharmonic Functions
We apply the coarea formula to obtain integrability of superharmonic functions and nonintegrability of subharmonic functions. The results involve the Green function. For a certain domain, say Lipschitz domain, we estimate the Green function and restate the results in terms of the distance from the boundary.
متن کاملBi-Lipschitz Mappings and Quasinearly Subharmonic Functions
After considering a variant of the generalized mean value inequality of quasinearly subharmonic functions, we consider certain invariance properties of quasinearly subharmonic functions. Kojić has shown that in the plane case both the class of quasinearly subharmonic functions and the class of regularly oscillating functions are invariant under conformal mappings. We give partial generalization...
متن کاملRemovable Sets for Subharmonic Functions
It is a classical result that a closed exceptional polar set is removable for subharmonic functions which are bounded above. Gardiner has shown that in the case of a compact exceptional set the above boundedness condition can be relaxed by imposing certain smoothness and Hausdorff measure conditions on the set. We give related results for a closed exceptional set, by replacing the smoothness an...
متن کاملTraces of Subharmonic Functions to Fractal Sets
We study traces of a class of subharmonic functions to Ahlfors regular subsets of Cn. In particular, we establish for the traces a generalized BMOproperty and the reverse Hölder inequality.
متن کامل